
M7210 Lecture 33 Wednesday, November 7, 2012

Cyclic Modules

Let A be a commutative ring with identity and let M be an A-module. Let m ∈ M . The
submodule of M generated by m is Am = { am | a ∈ A }. (Check this!) We say that M is cyclic

if M = Am for some m ∈ M . A itself is a cyclic A-module, with 1A its generator. The map
a 7→ am : A → Am is an A-module surjection, and its kernel ann(m) = { a ∈ A | am = 0 } is a
submodule (hence an ideal) of A. Thus, as an abelian group Am is isomorphic to A/ ann(m).
The module structure is given by the map: (a′, am) 7→ (a′a)m : A × Am → Am.

Where are we going with this? Suppose A is a PID. We say that Am is primary if ann(m) =
(pn) for some prime element p ∈ A and some positive integer n. We have seen that primary
cyclic Z-modules are the basic building blocks of finitely-generated Z-modules in the sense that
every finitely-generated Z-module is a finite direct sum of primary cyclic Z-modules and copies
of Z and is determined up to isomorphism by what summands occur. We also have a very
good understanding of Z/pn

Z, so this gives us a very complete picture of the finitely-generated
Z-modules. Our goal in the next few lectures is to generalize this perspective. What we have
said about Z modules is also true, with changes in some details, for modules over an PID.

After Z, the next most important PID is C[x], or more generally the rings of the form F[x],
where F is a field. We will show that, just as with Z-modules, every finitely-generated F[x]-
module is a finite direct sum of primary cyclic F[x]-modules and copies of F[x], and is deter-
mined up to isomorphism by what summands occur. To make full use of this, we need an
understanding of the structure of primary cyclic F[x]-modules. This is what we begin to do in
this lecture.

F-modules and F[x]-modules.

Let F be a field and let M be an F-module (i.e., a vector space over F). Let L : M → M be
a linear map. We can make M into an F[x]-module if we define the F[x] action as follows: if
f = a0 + a1x + · · · + anxn ∈ F[x] and m ∈ M , let fm = a0m + a1L(m) + · · · + anLn(m),
where Ln is the n-fold composition of L with itself. (The reader should check that this indeed
satisfies the defining identities for modules.) In other words, we define xm := L(m) and extend
the action to F[x] by using the module identities. Conversely, if M is an F[x]-module, then
x(a1m1 + a2m2) = a1xm1 + a2xm2 for all a1, a2 ∈ F and m1, m2 ∈ M , so m 7→ xm : M → M
is a linear map. To say all this in a nutshell, an F[x]-module is just a F-module equipped with
an F-module endomorphism.

Example. Let us apply this perspective to F[x] itself. By our “official” definition, F[x] consists
of the sequences c : N → F that are finitely non-zero. (Here, ci, i ∈ N is the coefficient of
xi when we write a polynomial in the traditional way: c0 + c1x + c2x

2 + · · · + cnxn.) As an
F-vector space, F[x] has a basis consisting of the sequences δi, i = 0, . . ., where δii = 1 and
δij = 0 when i 6= j, and x acts on this basis by xδi = δi+1. The use of the symbol δi to
denote elements of F[x] is unusual, of course. I have done this to emphasize the structure that
we have here. The usual notation for δi is xi. Note that when we view F[x] as a module,
we regard x as the sequence δ1. When we regard F[x] a a ring, we are likely to view x as an
“indeterminate” (a somewhat evasive label). When we regard F[x] as the ring of operators of
an F[x]-module, x becomes a linear map. (Such mental pictures may serve as a reminder of
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the structures that we are working with, but of course mental pictures are personal. You may
use whatever pictures you prefer.)

Cyclic F[x]-modules.

Let us try to understand the structure of F[x]/(g), where g = a0+a1x+· · ·+xn, ai ∈ F. By the
division theorem, no polynomial of degree < n belongs to the ideal (g) and thus (using coset
notation) 1 + (g), x + (g), x2 + (g), . . . , xn−1 + (g) are independent as elements of the F-vector
space F[x]/(g). (If they were not independent, you would be able to construct a polynomial of
degree < n in (g). How? ) Also by the division theorem, any polynomial h ∈ F[x] differs from
a multiple of g by a polynomial of degree < n, so the set

X = { 1 + (g), x + (g), x2 + (g), . . . , xn−1 + (g) }

spans the F-vector space F[x]/(g) and hence is a basis for this space.

Now, the linear map x : F[x]/(g) → F[x]/(g) acts on the elements of X as follows:

x
(

1 + (g)
)

= x + (g)

x
(

x + (g)
)

= x2 + (g)

...

x(xn−1 + (g)) = −a0

(

1 + (g)
)

− a1

(

x + (g)
)

− · · · − an−1

(

xn−1 + (g)
)

.

If we represent each element of F[x]/(g) as the row vectors whose entries are the constants in F

that we need to express the element as a linear combination of basis vectors, then the matrix
for the linear map x is:

(x;XX ) =

















0 1 0 0 · · · 0
0 0 1 0 · · · 0
0 0 0 1 · · · 0
...

...
...

...
...

...
0 0 0 0 · · · 1

−a0 −a1 −a2 −a3 · · · −an−1

















.

Here, we are using the notational convention introduced in Lecture 23. If f + (g) ∈ F[x]/(g),
then the row vector that express f + (g) with respect to the basis X is denoted (f + (g);X ).
We are assuming that the action of x is represented by matrix multiplication on the right:

(f + (g);X ) (x;XX ) = (xf + (g);X ).

Of course, we could also decide to use column vectors to express the elements of F[x]/(g) and
express x by matrix multiplication on the left. In this case the matrix that we would write
would be the transpose of the one written above. If you look in other books, you may see this.
Either of these matrices may be called the companion matrix of g.
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